Journal of Organometallic Chemistry, 384 (1990) C9–C11 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20627PC

Preliminary communication

Réactivité de l'allyltriméthylsilane avec les acétylcyclopropanes en présence d'acide de Lewis

P. Piras, M. Afshari, G. Léandri et H. Monti*

L.A.S.C.O., U.R.A. 109-Avenue Escadrille Normandie, Niémen, Boîte D12, F.-13397 Marseille Cedex 13 (France)

(Reçu le 8 novembre 1989)

Abstract

In the presence of Lewis acid, allyltrimethylsilane undergoes 1,2-addition to the carbonyl system of acetylcyclopropanes. A second direct attack of the nucleophilic reagent on the transient cyclopropylcarbynyl cation formed yields diallylic and functionalised cyclohexane derivatives.

Résumé

En présence d'acide de Lewis, l'allyltriméthylsilane réagit avec les acétylcyclopropanes par addition 1,2. Une deuxième addition directe du réactif nucléophile sur le cation cyclopropylcarbinyle intermédiairement formé conduit à des dérivés diallyliques et cyclohexaniques fonctionnalisés.

Les organosiliciés α -insaturés sont réactifs vis à vis de nombreux électrophiles carbonés [1]. En particulier, en présence d'acides de Lewis, ils s'additionnent en 1,2 sur les composés carbonylés saturés pour donner les alcools correspondants [2] et en 1,4 sur les cétones α,β -éthyléniques [3]. De même ils réagissent avec les cyclopropanes électrophiles par ouverture du cycle à trois chaînons [4,5].

Nous rapportons ici nos résultats concernant la réactivité originale de l'allyltriméthylsilane vis à vis d'acétylcyclopropanes (Schéma 1).

Dans une expérience type, à 10 mmol de **la** (0.98 g) dans 10 ml de CH_2Cl_2 sont ajoutées 11 mmol (11 ml, solution 1*M* dans CH_2Cl_2) de $TiCl_4$ à $-15^{\circ}C$ et sous atmosphère inerte. La solution jaune obtenue est maintenue 30 min à cette température, puis 21 mmol (2.39 g) d'allyltriméthylsilane sont additionnées. On laisse remonter la température du mélange réactionnel à 20°C et l'agitation est maintenue pendant 4 h. Après traitements habituels et passage rapide sur une courte colonne

Schéma 1.

Schéma 2.

de silice (éluant: pentane), les produits de la réaction (1.79 g) sont séparés par CPG préparative (colonne Carbowax 20M, 140°C) et identifiés [6 *].

La réaction première (Schéma 2) est une addition 1,2 comme cela est le cas avec les cétones aliphatiques ou alicycliques, mais ici, bien qu'étant dans les mêmes conditions que Sakurai [2], aucun alcool cyclopropanique ni aucun produit provenant d'une déshydratation possible de celui-ci ne sont détectés. Le cycle à trois chaînons favorise la formation du carbocation cyclopropylcarbinyle tertiaire [7] qui subit une deuxième attaque directe par la double liaison nucléophile de

^{*} Les numéros de référence pourvus d'un astérisque réfèrent aux notes explicatives dans la liste bibliographique.

l'allyltriméthylsilane. En effet: Les composés 3 et 4 sont nettement majoritaires par rapport aux produits d'ouverture 2, et dans le cas de la cétone cyclopropanique 1a, un dérivé cyclobutanique 5a (Schéma 2) provenant de la transposition cyclopropylcarbinyle \rightarrow cyclobutyle est identifié en faible quantité dans les produits de la réaction.

Le produit cyclique 4 (Schéma 2) est issu d'une réaction intramoléculaire entre la double liaison présente dans l'intermédiaire de la première addition et le carbocation β -silylé formé transitoirement lors de l'étape lente de la deuxième [8,9]. Cette réaction intramoléculaire est en compétition avec l'attaque directe du silicium par les ions Cl⁻ qui donne 3.

L'évaluation des potentialités et limites de cette réaction est actuellement en cours.

Bibliographie

- 1 (a) W.P. Weber, Silicon Reagents for Organic Synthesis, Springer Verlag, Berlin, 1983; (b) E.W. Colvin, Silicon in Organic Synthesis, Butterworths, London, 1981; (c) R. Calas, J. Organomet. Chem., 200 (1980) 11; (d) J. Dunoguès, Bull. Soc. Chim. Fr., (1987) 659.
- 2 A. Homosi et H. Sakurai, Tetrahedron Lett., (1976) 1295.
- 3 (a) A. Homosi et H. Sakurai, J. Am. Chem. Soc., 99 (1977) 1673; (b) T.A. Blumenkopf et C.H. Heathcock, ibid., 105 (1983) 2354.
- 4 R. Bambal et R.D.W. Kemmitt, J. Chem. Soc., Chem. Commun., (1988) 734.
- 5 M. Ohno, S. Matsuoka et S. Eguchi, J. Org. Chem., 51 (1986) 4553.
- 6 Les données spectroscopiques et les analyses centésimales sont en accord avec les structures proposées. Le composé **4b** est un mélange de deux stéréoisomères, le produit **4a** est unique. La détermination des proportions relatives et de la stéréochimie de chacun de ces isomères ont fait l'objet d'une étude RMN bidimentionnelle détaillée soumise à publication dans une revue spécialisée.

2a (E/Z ou Z/E: 80/20)¹H RMN (200 MHz, CDCl₃): δ 5.82–5.68 (m, 1H, CH=); 5.07–4.97 (m, 2H, CH₂=); 3.53 et 3.52 (2t, J 7.5 Hz, 2H, CH₂Cl **2a**-Z et CH₂Cl **2a**-E); 2.82–2.76 (m, 2H, =CCH₂C=); 2.58–2.49 (m, 2H, CH₂C=); 1.69 et 1.66 (2s élargis, 6H, CH₃ **2a**-Z et CH₃ **2a**-E). ¹³C RMN (CDCl₃): δ 136.3 et 135.6 (CH); 129.7 (C); 125.5 et 125.4 (C); 115.1 et 114.8 (CH₂); 42.9 et 42.8 (CH₂); 39.0 et 38.7 (CH₂); 38.1 et 37.8 (CH₂); 18.54, 18.5, 18.3 et 18.1 (CH₃).

2b (E/Z: 75/25) ¹H RMN δ 5.90–5.67 (m, 1H, CH=); 5.29–5.17 (m. 1H, CH=); 5.12–5.02 (m, 2H, CH₂=); 3.52 (t, J 7.2 Hz, 2H, CH₂Cl **2b**-*E*); 3.51 (t, J 7.2 Hz, 2H, CH₂Cl **2b**-*Z*); 2.81–2.74 (m, 2H, =CCH₂C=); 2.56–2.45 (m, 2H, CH₂C=); 1.73 (s élargi, 3H, CH₃ **2b**-*Z*); 1.65 (s élargi, 3H, CH₃ **2b**-*E*). ¹³C RMN δ **2b**-*E* 137.0 (C); 136.4 (CH); 120.8 (CH); 115.9 (CH₂); 44.2 (CH₂); 43.9 (CH₂); 31.5 (CH₂); 16.2 (CH₃); **2b**-*Z* 136.5 (C); 135.5 (CH); 121.3 (CH); 115.4 (CH₂); 44.3 (CH₂); 36.4 (CH₂); 31.3 (CH₂); 23.2 (CH₃).

3a ¹H RMN δ 6.0–5.80 (m, 2H, CH=); 5.04–4.93 (m, 4H, CH₂=); 2.20–1.95 (m, 4H, CH₂C=); 1.03 (s élargi, 3H, CH₃ cycle); 0.63 (s, 3H, CH₃); 0.50–0.44 et 0.06–0.0 (2m, 4H, CH₂CH₂ cycle). ¹³C RMN: δ 136.1 (CH); 116.4 (CH₂); 43.2 (CH₂); 37.4 (C); 22.0 (CH₃); 20.3 (C); 20.0 (CH₃); 9.6 (CH₂).

3b ¹H RMN δ 5.90–5.60 (m, 2H, CH=); 4.90–4.80 (m, 4H, CH₂=); 1.86 (d, *J* 7.4 Hz, 4H, CH₂C=); 0.60–0.45 (m, 1H, CH cycle); 0.39 (s, 3H, CH₃); 0.20–0.0 (m, 4H, CH₂CH₂ cycle). ¹³C RMN: δ 135.8 (CH); 116.8 (CH₂); 45.4 (CH₂); 35.2 (C); 20.2 (CH₃); 20.1 (CH): 10.3 (CH₂).

4a ¹H RMN δ 4.02 (m, 1H, CHCl); 0.97 (s, 3H, CH₃); 0.91 (s, 3H, CH₃); 0.01 (m, 9H, (CH₃)₃Si). ¹³C RMN: δ 58.1 (CH); 47.3 (CH₂); 44.3 (CH₂); 42.5 (CH₂); 37.2 (C); 30.2 (CH); 25.4 (CH₂); 24.2 (C); 21.7 (CH₃); 21.2 (CH₃); 9.7 (CH₂); 9.6 (CH₂); -0.5 (CH₃).

5a (*cis/trans* ou *trans/cis*: 60/40) ¹H RMN: δ 5.79–5.56 (m, 2H, CH=); 5.01–4.86 (m, 4H, CH₂=); 2.20–1.96 (m, 4H, CH₂C=); 1.78–1.57 et 1.51–1.35 (2m, 4H, CH₂CH₂ cycle); 1.00 et 0.92 (2s, 6H, CH₃ **5a**-*cis* et CH₃ **5a**-*trans*). ¹³C RMN: δ 136.4 et 136.2 (CH); 116.4 et 116.2 (CH₂); 47.9 et 47.5 (C); 42.8 et 41.7 (CH₂); 29.3 et 28.8 (CH₂); 21.9 et 21.6 (CH₃).

- 7 J. Salaün dans Z. Rappoport (Ed.), The Chemistry of the Cyclopropyl Group, John Wiley & Sons Ltd., New York, 1987, p. 831.
- 8 R. Pardo, J.P. Zahra et M. Santelli, Tetrahedron Lett., (1979) 4557.
- 9 T.K. Sakar et N.H. Andersen, Tetrahedron Lett., (1978) 3513.